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Abstract— This paper presents the development of an autonomous 
differential wheeled robot able to avoid short-distance obstacles 
using signals from a set of infrared sensors. For the proposed 
implementation, the situations of imminent collision are solved on 
line using an adequately designed genetic algorithm (GA) . In this 
way a knowledge database comprising the main set of rules that 
directly map the sensor information into the engine commands 
can be developed on the fly. Our experiments proved that a 
satisfactory behavior can be obtained even in cases when no initial 
knowledge database, usually obtained previously off-line through 
simulations, is provided. The implementation uses a MFC5213 
Freescale microcontroller. The GA is developed in C language, 
using the CodeWarrior 7.2.2 IDE and was extensively tested to 
prove the viability of the proposed solution. 

I. INTRODUCTION  
Recently, due to the progress of the electronics industry that 

provides very powerful processors (operating at higher 
processing frequencies, having multiples cores, larger memory, 
larger word size etc.) sophisticated algorithms can be 
implemented in embedded systems. From this perspective, the 
soft computing techniques (Artificial Neural Networks (ANN), 
Fuzzy Logics (FL), Evolutionary Computation (EC)) received a 
particular interest especially in the field of the autonomous 
robots. In such applications, the controller adjusts autonomously 
the motor command whenever the robot is in the imminent 
danger of colliding.  These techniques are extremely adequate 
for processing real world information, involving tolerance of 
imprecision and uncertainty. As a result, real-time robot control 
applications are possible based on all the above mentioned soft 
computing techniques. 

The fuzzy logic approach was one of the first choices in this 
context. The fuzzy logic controllers, which use type-1 fuzzy 
sets, are widely used. The fuzzy logic controllers, which use 
type-1 fuzzy sets, are widely use [1]. But the dynamic 
unstructured environments generate problems regarding the 
antecedents’ and consequents’ membership function design, 
resulting sub-optimal type-1 fuzzy sets for specific 
environments and operation condition [1]. As a result, more 
recently, type-2 fuzzy sets start to be used in mobile robots 
control and in industrial applications [2], [3].  

Expressing a problem with uncertainties as a stochastic 
programming application ensures the ability of a GA to solve it 
[4]. Consequently, the GA controller is able to deal with all the 
existing problems of a real-time robot control.  

In the literature several hybrid controllers for robots – GA-
fuzzy or GA-neural, are described. In these approaches, the GA 
adjusts the parameters of the controller, obtained by means of 
an evolutionary process, providing so different behaviors of the 
robot. During the evolution, the controllers with the best 
performances have more chances to spread their characteristics 
to the offspring and so, after several generations, a robot 
controller with better performances is obtained. There are 
several successful reported applications in which the GA tunes 
the fuzzy logic controllers [5-7]. Ant colony algorithm is also 
used to enhance the GA in the design of the fuzzy controllers 
devised for obstacle avoidance, [8].  

One of the main applications of the GA in robotics consists in 
finding the optimal path that should be followed by a robotic 
system in order to reach a particular destination [9], [10]. The 
main stages of designing a reliable navigation algorithm for an 
autonomous robot are: localization of the current position, 
autonomous execution of a local collision-free motion within its 
environment and, eventually, finding out a global optimal path 
to its final destination. 

For most of the implementations of the mobile robot 
navigation, the support of its “intelligence” is offered by a 
previously constructed knowledge database which holds the 
solutions of avoiding obstacles for some particular 
environments, practically a set of rules providing adequate 
motor commands. In order to obtain these databases in FL the 
knowledge of human experts is used [11]. 

The work presented in this paper represent a continuation of 
that one presented in [12] where the core movement knowledge-
database was determined off-line using a simulation 
environment for robotic systems in which a GA is used to 
extract the above mentioned rules. Unlike the previously 
mentioned approach, in this paper the rules of the knowledge 
database are extracted using a GA that runs in real time directly 
on the robot. 

There are numerous critical applications, like space missions, 
where the robot’s mission could be compromised due to a 
failure and so, a large quantity of resources and efforts could be 
lost forever. To prevent a failure of the controller involved in 
the obstacle avoidance behavior (in which the core movement 
knowledge-database was previously obtained) a self-organized 
intelligent robotic controller must be used to obtain in real time 
a new movement knowledge-database in such situations.  

The new proposed implementation solves the problem of 
devising a real-time local collision-free robot trajectory 



extracting a new knowledge-database in the case of a 
malfunction of the original movement knowledge-database. 

The results obtained in a previous paper [12] and the results 
obtained in this paper confirm the validity of the GA approach 
for obstacle avoidance problem.  

The next two sections present the robot hardware and 
software architectures. Experimental results are commented in 
Section IV, followed by conclusions. 

II. HARDWARE ARCHIECTURE OF THE ROBOT 
The designed robot has three degrees of freedom, being able 

to execute two basic movements: rotation and translation. In 
the rear part of the robot there two motor-driven wheels are 
placed providing locomotion through differential drive 
mechanism, see Figure 1. The two direct current engines that 
drive the wheels are, in turn, controlled by a microcontroller 
system. An unpowered wheel, placed in the frontal-central part 
of the robot, ensures stability. The robot has an average top 
speed of 0.3 m/s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  (a). Robot prototype;  (b) detail of the previous implementation [12] 

In the new implementation of the robotic system several 
improvements have been realized. One of them concerns the 
mechanical structure of the robot. The wheels are now placed 
inside the structure of the robot, as shown in Fig. 1(a), as 
compared with the older version, see details in Fig. 1(b) [12]. In 
this way, the left and right sensors protect the wheels from 
crashing into obstacles from the environment and, much more, 
the learning procedure proved to be significantly improved. 

The robotic system is equipped with four infrared, IR, 
proximity sensors – GP2D120XJ00F, with an active distance 
measuring range from 4 up to 30 cm. Three of the IR sensors 
are placed in front of the robot, supervising the left, the central 
and the right part of the frontal environment and one is placed in 
the central-rear position. The sensors provide voltages 
proportional with the distance to the detected obstacles. The 
sensor characteristic was linearized based on a regression 
algorithm [13]. 

The GA based controller is built on a powerful 32-bit 
MCF5213, a Freescale RISC architecture microcontroller, [14]. 
It belongs to the ColdFireTM family having a large number of 
peripheral equipments such as eight PWM channels, four 32-bit 
timers with DMA request capability, eight channels ADC, 3 
UARTs, 1 CAN. 

The speed of the wheels is updated at 3.3 Hz, through two 
PWM channels that command two H-bridges. 

III. SOFTWARE ARCHTECTURE 
The software architecture can be divided into two different 

layers. The top level is a responsible for the data acquisition 
and navigation functionalities. The lower level controls the 
motor. Several special functions were designed in assembly 
language and in C to solve the appropriate exploratory motion 
requirements and to control the whole robotic system.   

The main characteristic of an autonomous robot is its ability 
to learn, adapt and generalize the knowledge related to its 
interaction with the environment.  

The use of GA for solving the problem of collision-free 
exploratory motion represents a new approach, [12]. The 
learning and adaptation processes are based on the genetic 
evolution of an adequately designed population of individuals 
whose performances are evaluated by a special fitness function.  

A. Genetic Algorithms 
A genetic algorithm is a heuristic search procedure inspired 

from the natural process of evolution as in biological sciences. 
The algorithm operates over a population of possible candidate 
solutions, called chromosomes or individuals [15]. 

Each chromosome is evaluated and ranked by means of a 
fitness evaluation function. The fitness function provides 
information of the adequacy of each individual. The evolution 
of the GA from a generation to the next one involves the 
following steps: fitness evaluation, chromosome selection, 
crossover, mutation and building the next generation. The 
population genetics evolves in a given environment according to 
the natural behavior in which the fittest survive and the weakest 
is destroyed and so the next generation is created with the only 
goal of improving the population fitness. Different stopping 
criteria can be introduced in order to complete de evolution 
process. 

The general description of the GA is given in Fig.2 . 
All selection methods are based on the same principle: giving 

fitter chromosomes a larger probability of selection. Common 
methods for selection are: Roulette Wheel selection, Stochastic 
Universal Sampling, Tournament selection. 

New individuals, offspring, are generally created as offspring 
of two parents by selecting (usually at random) one or more 
crossover points within the chromosome of each parent. The 
parts delimited by the crossover points are then interchanged 
between the parents. 

New individuals are also created by making modifications to 
one selected individual by means of so called mutations. The 
modifications can consist of changing one or more values in the 
representation. 
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Figure 2.  GA Algorithm 

B. GA Implementation 
In our implementation, each individual of the GA population 

has two genes of 8 bits each: the left and right engine 
commands respectively. As a result, each chromosome is 
represented on 16 bits. 

Two different representations of the genes have been 
investigated for this GA implementation:  a binary and a 
floating point one [16]. Finally we have adopted the real valued 
representation, which gave us the possibility to adjust the 
precision of the representation and so, to control the size of data 
segment as well as the execution time. 

Special care had to be taken in order to optimize the length of 
the code so as to fit the flash memory of the controller. A 
difficult task was also the minimization of the length of the data 
segment so as to fit the RAM capacity. We have designed 
special data structures (unions to overlap buffers of data) while 
using the possible minimum length of the variable 
representation (short int instead of int, float instead of double) 

After several tests and taking into account the restrictions 
imposed both by the size of the RAM and the real-time 
execution, we have adopted a population with ten individuals. 
The designed GA has the following parameters: crossover 
probability Cross_Prob =0.7, mutation probability was chosen 
in connection with the length of the chromosomes (Lind), which 
depends on the imposed representation precision, Mut_prob 
=0.7/Lind [16], generation gap=0.9, maximum number of 
generations Max_Gen =20.  

We have implemented the one point crossover operator and 
the Stochastic Universal Sampling selection method. 

The analytic form of the fitness function, f(·), is presented in 
equation (1). The relation (1) complies with the fundamental 
paradigm that defines the fitness in the genetic algorithm field: 
the fitness takes the lowest value (zero in our situation) only 

when a chromosome successfully solves the problem. In other 
cases, the fitness measures the ability of each chromosome to 
solve more or less the problem – being in a direct proportional 
relationship with the vicinity of an obstacle, as it is our case. 
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where n represents the current generation. 
After 300 ms of robot movement, based on the cj[n] 

chromosome containing the engine commands, the fitness is 
calculated. A collision-free motion, specified by a chromosome 
cj[n], is characterized by values of 0 for all four sensors (this 
corresponds to the “no obstacle” case, in the vicinity of the 
robot); in such a situation the fitness function, f(cj[n]), is also 
zero. 

With the aim of speeding up the GA execution we have 
stopped the genetic evolution if the fitness function of the best 
individual is less than 0.1. 

In order to obtain a set of adaptive movement rules – based 
on a continue interaction of the robot with the environment and 
without any human intervention, in a first main stage the robot 
has to go straightforward. When the robot comes close enough 
to an obstacle (i.e. the obstacle lies in the active range of its 
sensors), the GA starts to find the best solution in order to avoid 
the obstacle; this last case corresponds to the second main stage 
of the algorithm. In this last stage, the most important goal of 
the real-coded genetic algorithm is to find the best 
chromosome(s) that encapsulates those engine commands that 
minimize the fitness function. As a result, the GA finds the best 
way to avoid the obstacle. 

The GA works with population of chromosomes. In other 
researches, each chromosome characterizes a single robot [7]. In 
our case, we have only one robot that operates the GA, which 
can be considered a major practical limitation. To avoid this 
limitation, in a first step, the robot will move in one direction 
based on the engine commands encapsulated in the first 
chromosome from the population. After 300 ms the robot stops 
and the fitness value associated with the chromosome is 
determined. Then, the robot comes back into the initial position 
and the algorithm proceeds, in the same way for all the other 
chromosomes.   

Finally, the behavior of the robot can be considered as similar 
to that of a human that reacts and learns through experience. 

IV. EXPERIMENTAL RESULTS 
The proposed implementation was tested in a real 

environment with static obstacles (in both learning and avoiding 
phases). The GA self-organized intelligent controller runs on 
the robotic system and interacts with the environment on-line 
and in a real-time fashion. The interaction with the environment 
is made based on its sensors and the engines (effectors) and the 
result of these interactions is a set of rules (extracted based on 
an auto-organizing process). 

The execution time for evaluating a generation of the GA is 
11 seconds.  

In Table I we present some of the results obtained during the 
experiments: in the first four columns – the information 

 
Initialize 
 Pop   // Randomly created population 
 Cross_Prob // Crossover probability 
 Mut_Prob // Mutation probability 
 Max_Gen // Maximum no. of generations 
 
Procedure 
 Gen=1 
 Compute_fitness(Pop) 

While(Gen<=Max_Gen) 
 Sel_pop = Select(Pop) 
 Pop = Crossover(Sel_pop, Cross_Prob) 

Pop = Create_NewPop(Sel_pop, Pop) 
 Pop = Mutate(Pop, Mut_prob) 

  Compute_fitness(Pop) 
  Gen=Gen+1 
 EndWhile 
 Optimal=Min_fitness(Pop) 
EndProcedure 

 



acquired from the IR sensors (0 – no obstacle in the sensor 
range, 1 – imminent collision); the last columns – the engine 
commands as resulted from the GA. 

TABLE I.  MOVEMENT KNOWLEDGE DATABASE – REAL TIME 
RECORDINGS 

Sensors Engines 
Left Center Right Back Left Right 

…
 

…
 

…
 

…
 

…
 

…
 

0.3669 0.3133 0.1514 0.0 -0.4117 -0.1607 
0.3278 0.3325 0.3669 0.0 -0.6235 -0.1529 
0.0 0.4306 0.8012 0.0  0.4376  0.7242 
0.7229 0.3301 0.0 0.0  0.4509  0.2 
0.5326 0.4278 0.3472 0.0  0.6741  0.2302 

…
 

…
 

…
 

…
 

…
 

…
 

 
 
We have thoroughly investigated the robot behavior in 

different situations as function of the relative position with 
respect to the obstacles inspecting the created knowledge 
database. One interesting particular case is illustrated in Fig. 3. 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Obstacle avoidance  case 

What could appear as a trivial solution, for example in the 
cases when the final decision at a certain moment is moving 
backwards (negative commands for the engines), depicted as 
trajectory 2 in Fig. 3, proved to be a feasible one as it places the 
robot in a position which is more appropriate for avoiding the 
obstacle (the next decisions for engine commands will 
effectively avoid it). 

V. CONCLUSIONS  
This paper presents the implementation of an autonomous 

wheeled robot using a GA based intelligent strategy to avoid 
obstacles. The novelty of the proposed solution consists in the 
absence of an initial knowledge database. The robot is able to 
determine the trajectory which allows the avoidance of the 
obstacle, to store the solution (engine commands correlated to 
the signals acquired from the sensors) and to create in real-time 
a knowledge database for further environment exploration.  The 
practical implementation using MCF5213 Freescale family 
microcontroller validated the proposed solution.  
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