
Real-Time Genetic Obstacle Avoidance Controller
for a Differential Wheeled Exploratory Robot

Adriana Sîrbu1 and Dan-Marius Dobrea1
1 Technical University “Gh. Asachi”, Faculty of Electronics, Telecommunications and Information Technology, Iaşi, Romania

mdobrea@etti.tuiasi.ro , asirbu@etti.tuiasi.ro

Abstract— This paper presents the development of an autonomous
differential wheeled robot able to avoid short-distance obstacles
using signals from a set of infrared sensors. For the proposed
implementation, the situations of imminent collision are solved on
line using an adequately designed genetic algorithm (GA) . In this
way a knowledge database comprising the main set of rules that
directly map the sensor information into the engine commands
can be developed on the fly. Our experiments proved that a
satisfactory behavior can be obtained even in cases when no initial
knowledge database, usually obtained previously off-line through
simulations, is provided. The implementation uses a MFC5213
Freescale microcontroller. The GA is developed in C language,
using the CodeWarrior 7.2.2 IDE and was extensively tested to
prove the viability of the proposed solution.

I. INTRODUCTION
Recently, due to the progress of the electronics industry that

provides very powerful processors (operating at higher
processing frequencies, having multiples cores, larger memory,
larger word size etc.) sophisticated algorithms can be
implemented in embedded systems. From this perspective, the
soft computing techniques (Artificial Neural Networks (ANN),
Fuzzy Logics (FL), Evolutionary Computation (EC)) received a
particular interest especially in the field of the autonomous
robots. In such applications, the controller adjusts autonomously
the motor command whenever the robot is in the imminent
danger of colliding. These techniques are extremely adequate
for processing real world information, involving tolerance of
imprecision and uncertainty. As a result, real-time robot control
applications are possible based on all the above mentioned soft
computing techniques.

The fuzzy logic approach was one of the first choices in this
context. The fuzzy logic controllers, which use type-1 fuzzy
sets, are widely used. The fuzzy logic controllers, which use
type-1 fuzzy sets, are widely use [1]. But the dynamic
unstructured environments generate problems regarding the
antecedents’ and consequents’ membership function design,
resulting sub-optimal type-1 fuzzy sets for specific
environments and operation condition [1]. As a result, more
recently, type-2 fuzzy sets start to be used in mobile robots
control and in industrial applications [2], [3].

Expressing a problem with uncertainties as a stochastic
programming application ensures the ability of a GA to solve it
[4]. Consequently, the GA controller is able to deal with all the
existing problems of a real-time robot control.

In the literature several hybrid controllers for robots – GA-
fuzzy or GA-neural, are described. In these approaches, the GA
adjusts the parameters of the controller, obtained by means of
an evolutionary process, providing so different behaviors of the
robot. During the evolution, the controllers with the best
performances have more chances to spread their characteristics
to the offspring and so, after several generations, a robot
controller with better performances is obtained. There are
several successful reported applications in which the GA tunes
the fuzzy logic controllers [5-7]. Ant colony algorithm is also
used to enhance the GA in the design of the fuzzy controllers
devised for obstacle avoidance, [8].

One of the main applications of the GA in robotics consists in
finding the optimal path that should be followed by a robotic
system in order to reach a particular destination [9], [10]. The
main stages of designing a reliable navigation algorithm for an
autonomous robot are: localization of the current position,
autonomous execution of a local collision-free motion within its
environment and, eventually, finding out a global optimal path
to its final destination.

For most of the implementations of the mobile robot
navigation, the support of its “intelligence” is offered by a
previously constructed knowledge database which holds the
solutions of avoiding obstacles for some particular
environments, practically a set of rules providing adequate
motor commands. In order to obtain these databases in FL the
knowledge of human experts is used [11].

The work presented in this paper represent a continuation of
that one presented in [12] where the core movement knowledge-
database was determined off-line using a simulation
environment for robotic systems in which a GA is used to
extract the above mentioned rules. Unlike the previously
mentioned approach, in this paper the rules of the knowledge
database are extracted using a GA that runs in real time directly
on the robot.

There are numerous critical applications, like space missions,
where the robot’s mission could be compromised due to a
failure and so, a large quantity of resources and efforts could be
lost forever. To prevent a failure of the controller involved in
the obstacle avoidance behavior (in which the core movement
knowledge-database was previously obtained) a self-organized
intelligent robotic controller must be used to obtain in real time
a new movement knowledge-database in such situations.

The new proposed implementation solves the problem of
devising a real-time local collision-free robot trajectory

extracting a new knowledge-database in the case of a
malfunction of the original movement knowledge-database.

The results obtained in a previous paper [12] and the results
obtained in this paper confirm the validity of the GA approach
for obstacle avoidance problem.

The next two sections present the robot hardware and
software architectures. Experimental results are commented in
Section IV, followed by conclusions.

II. HARDWARE ARCHIECTURE OF THE ROBOT
The designed robot has three degrees of freedom, being able

to execute two basic movements: rotation and translation. In
the rear part of the robot there two motor-driven wheels are
placed providing locomotion through differential drive
mechanism, see Figure 1. The two direct current engines that
drive the wheels are, in turn, controlled by a microcontroller
system. An unpowered wheel, placed in the frontal-central part
of the robot, ensures stability. The robot has an average top
speed of 0.3 m/s.

Figure 1. (a). Robot prototype; (b) detail of the previous implementation [12]

In the new implementation of the robotic system several
improvements have been realized. One of them concerns the
mechanical structure of the robot. The wheels are now placed
inside the structure of the robot, as shown in Fig. 1(a), as
compared with the older version, see details in Fig. 1(b) [12]. In
this way, the left and right sensors protect the wheels from
crashing into obstacles from the environment and, much more,
the learning procedure proved to be significantly improved.

The robotic system is equipped with four infrared, IR,
proximity sensors – GP2D120XJ00F, with an active distance
measuring range from 4 up to 30 cm. Three of the IR sensors
are placed in front of the robot, supervising the left, the central
and the right part of the frontal environment and one is placed in
the central-rear position. The sensors provide voltages
proportional with the distance to the detected obstacles. The
sensor characteristic was linearized based on a regression
algorithm [13].

The GA based controller is built on a powerful 32-bit
MCF5213, a Freescale RISC architecture microcontroller, [14].
It belongs to the ColdFireTM family having a large number of
peripheral equipments such as eight PWM channels, four 32-bit
timers with DMA request capability, eight channels ADC, 3
UARTs, 1 CAN.

The speed of the wheels is updated at 3.3 Hz, through two
PWM channels that command two H-bridges.

III. SOFTWARE ARCHTECTURE
The software architecture can be divided into two different

layers. The top level is a responsible for the data acquisition
and navigation functionalities. The lower level controls the
motor. Several special functions were designed in assembly
language and in C to solve the appropriate exploratory motion
requirements and to control the whole robotic system.

The main characteristic of an autonomous robot is its ability
to learn, adapt and generalize the knowledge related to its
interaction with the environment.

The use of GA for solving the problem of collision-free
exploratory motion represents a new approach, [12]. The
learning and adaptation processes are based on the genetic
evolution of an adequately designed population of individuals
whose performances are evaluated by a special fitness function.

A. Genetic Algorithms
A genetic algorithm is a heuristic search procedure inspired

from the natural process of evolution as in biological sciences.
The algorithm operates over a population of possible candidate
solutions, called chromosomes or individuals [15].

Each chromosome is evaluated and ranked by means of a
fitness evaluation function. The fitness function provides
information of the adequacy of each individual. The evolution
of the GA from a generation to the next one involves the
following steps: fitness evaluation, chromosome selection,
crossover, mutation and building the next generation. The
population genetics evolves in a given environment according to
the natural behavior in which the fittest survive and the weakest
is destroyed and so the next generation is created with the only
goal of improving the population fitness. Different stopping
criteria can be introduced in order to complete de evolution
process.

The general description of the GA is given in Fig.2 .
All selection methods are based on the same principle: giving

fitter chromosomes a larger probability of selection. Common
methods for selection are: Roulette Wheel selection, Stochastic
Universal Sampling, Tournament selection.

New individuals, offspring, are generally created as offspring
of two parents by selecting (usually at random) one or more
crossover points within the chromosome of each parent. The
parts delimited by the crossover points are then interchanged
between the parents.

New individuals are also created by making modifications to
one selected individual by means of so called mutations. The
modifications can consist of changing one or more values in the
representation.

The motors
controller system

MCF 5213 microcontroller
development board

The front distance
IR sensors

Interface board between microcontroller
board and the whole system

(a) (b)

A

Figure 2. GA Algorithm

B. GA Implementation
In our implementation, each individual of the GA population

has two genes of 8 bits each: the left and right engine
commands respectively. As a result, each chromosome is
represented on 16 bits.

Two different representations of the genes have been
investigated for this GA implementation: a binary and a
floating point one [16]. Finally we have adopted the real valued
representation, which gave us the possibility to adjust the
precision of the representation and so, to control the size of data
segment as well as the execution time.

Special care had to be taken in order to optimize the length of
the code so as to fit the flash memory of the controller. A
difficult task was also the minimization of the length of the data
segment so as to fit the RAM capacity. We have designed
special data structures (unions to overlap buffers of data) while
using the possible minimum length of the variable
representation (short int instead of int, float instead of double)

After several tests and taking into account the restrictions
imposed both by the size of the RAM and the real-time
execution, we have adopted a population with ten individuals.
The designed GA has the following parameters: crossover
probability Cross_Prob =0.7, mutation probability was chosen
in connection with the length of the chromosomes (Lind), which
depends on the imposed representation precision, Mut_prob
=0.7/Lind [16], generation gap=0.9, maximum number of
generations Max_Gen =20.

We have implemented the one point crossover operator and
the Stochastic Universal Sampling selection method.

The analytic form of the fitness function, f(·), is presented in
equation (1). The relation (1) complies with the fundamental
paradigm that defines the fitness in the genetic algorithm field:
the fitness takes the lowest value (zero in our situation) only

when a chromosome successfully solves the problem. In other
cases, the fitness measures the ability of each chromosome to
solve more or less the problem – being in a direct proportional
relationship with the vicinity of an obstacle, as it is our case.

 []() []∑
=

=
4

14
1

i
ijj nsncf (1)

where n represents the current generation.
After 300 ms of robot movement, based on the cj[n]

chromosome containing the engine commands, the fitness is
calculated. A collision-free motion, specified by a chromosome
cj[n], is characterized by values of 0 for all four sensors (this
corresponds to the “no obstacle” case, in the vicinity of the
robot); in such a situation the fitness function, f(cj[n]), is also
zero.

With the aim of speeding up the GA execution we have
stopped the genetic evolution if the fitness function of the best
individual is less than 0.1.

In order to obtain a set of adaptive movement rules – based
on a continue interaction of the robot with the environment and
without any human intervention, in a first main stage the robot
has to go straightforward. When the robot comes close enough
to an obstacle (i.e. the obstacle lies in the active range of its
sensors), the GA starts to find the best solution in order to avoid
the obstacle; this last case corresponds to the second main stage
of the algorithm. In this last stage, the most important goal of
the real-coded genetic algorithm is to find the best
chromosome(s) that encapsulates those engine commands that
minimize the fitness function. As a result, the GA finds the best
way to avoid the obstacle.

The GA works with population of chromosomes. In other
researches, each chromosome characterizes a single robot [7]. In
our case, we have only one robot that operates the GA, which
can be considered a major practical limitation. To avoid this
limitation, in a first step, the robot will move in one direction
based on the engine commands encapsulated in the first
chromosome from the population. After 300 ms the robot stops
and the fitness value associated with the chromosome is
determined. Then, the robot comes back into the initial position
and the algorithm proceeds, in the same way for all the other
chromosomes.

Finally, the behavior of the robot can be considered as similar
to that of a human that reacts and learns through experience.

IV. EXPERIMENTAL RESULTS
The proposed implementation was tested in a real

environment with static obstacles (in both learning and avoiding
phases). The GA self-organized intelligent controller runs on
the robotic system and interacts with the environment on-line
and in a real-time fashion. The interaction with the environment
is made based on its sensors and the engines (effectors) and the
result of these interactions is a set of rules (extracted based on
an auto-organizing process).

The execution time for evaluating a generation of the GA is
11 seconds.

In Table I we present some of the results obtained during the
experiments: in the first four columns – the information

Initialize
 Pop // Randomly created population
 Cross_Prob // Crossover probability
 Mut_Prob // Mutation probability
 Max_Gen // Maximum no. of generations

Procedure
 Gen=1
 Compute_fitness(Pop)

While(Gen<=Max_Gen)
 Sel_pop = Select(Pop)
 Pop = Crossover(Sel_pop, Cross_Prob)

Pop = Create_NewPop(Sel_pop, Pop)
 Pop = Mutate(Pop, Mut_prob)

 Compute_fitness(Pop)
 Gen=Gen+1
 EndWhile
 Optimal=Min_fitness(Pop)
EndProcedure

acquired from the IR sensors (0 – no obstacle in the sensor
range, 1 – imminent collision); the last columns – the engine
commands as resulted from the GA.

TABLE I. MOVEMENT KNOWLEDGE DATABASE – REAL TIME
RECORDINGS

Sensors Engines
Left Center Right Back Left Right

…

…

…

…

…

…

0.3669 0.3133 0.1514 0.0 -0.4117 -0.1607
0.3278 0.3325 0.3669 0.0 -0.6235 -0.1529
0.0 0.4306 0.8012 0.0 0.4376 0.7242
0.7229 0.3301 0.0 0.0 0.4509 0.2
0.5326 0.4278 0.3472 0.0 0.6741 0.2302

…

…

…

…

…

…

We have thoroughly investigated the robot behavior in

different situations as function of the relative position with
respect to the obstacles inspecting the created knowledge
database. One interesting particular case is illustrated in Fig. 3.

Figure 3. Obstacle avoidance case

What could appear as a trivial solution, for example in the
cases when the final decision at a certain moment is moving
backwards (negative commands for the engines), depicted as
trajectory 2 in Fig. 3, proved to be a feasible one as it places the
robot in a position which is more appropriate for avoiding the
obstacle (the next decisions for engine commands will
effectively avoid it).

V. CONCLUSIONS
This paper presents the implementation of an autonomous

wheeled robot using a GA based intelligent strategy to avoid
obstacles. The novelty of the proposed solution consists in the
absence of an initial knowledge database. The robot is able to
determine the trajectory which allows the avoidance of the
obstacle, to store the solution (engine commands correlated to
the signals acquired from the sensors) and to create in real-time
a knowledge database for further environment exploration. The
practical implementation using MCF5213 Freescale family
microcontroller validated the proposed solution.

ACKNOWLEDGMENT
The authors are grateful to the Silica (an Avnet Company) for

the generous donation of a set of Freescale development boards.

REFERENCES
[1] H. Hagras, C. Wagner, “Towards the Wide Spread Use of Type-2 Fuzzy

Logic Systems in Real World Applications,” IEEE Computational
Intelligence Magazine, vol. 7, no. 3, 2012, pp. 14 – 24.

[2] H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE
Comput. Intell. Mag., vol. 2, no. 1, Feb. 2007, pp. 30–43.

[3] T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, and I. Burkhan
Türksen, “Industrial applications of type-2 fuzzy sets and systems: A
concise review,” Comput. Ind., vol. 62, 2011, pp. 125–137.

[4] Yasunari Yoshitomi Hiroko Ikenoue Toshifumi Takeba Shigeyuki
Tomita, “Genetic Algorithm in Uncertain Environments for Solving
Stochastic Programming Problem,” Journal of the Operations Research,
Vol. 43, No. 2, June 2000, pp. 266-290.

[5] S. Tan, S.X. Yang and A.M. Zhu, “A novel ga-based fuzzy controller for
mobile robots on dynamic environments with moving obstacles,”
International Journal of Robotics & Automation, Vol. 26, Issue 2, 2011,
pp. 212-228.

[6] R. Martíneza, O. Castilloa and L.T. Aguilarb. “Optimization of interval
type-2 fuzzy logic controllers for a perturbed autonomous wheeled
mobile robot using genetic algorithms,” Information Sciences, Vol. 179,
Issue 13, 2009, pp. 2158-2174.

[7] C. Messom, “Genetic algorithms for auto-tuning mobile robot motion
control,” Research Letters in the Information and Mathematical Sciences,
Vol. 3, 2002, pp. 129-134.

[8] J.S. Chiou, C.J Wang, K.Y. Wang, Y.C. Hu, S.W. Cheng and C.H. Chen,
“Hybrid algorithm of FLC design for robot soccer,” International Journal
of Nonlinear Sciences and Numerical Simulation, Vol. 11, 2010, pp. 119-
122.

[9] A. Hosseinzadeh and H. Izadkhah, “Evolutionary approach for mobile
robot path planning in complex environment,” International Journal of
Computer Science Issues, Vol. 7, Issue 4, No 8, 2010, pp. 1-9.

[10] P.P. Repoussis, C.D. Tarantilis and G. Ioannou, “Arc-guided evolutionary
algorithm for the vehicle routing problem with time windows.”, IEEE
Transactions on Evolutionary Computation, Vol. 13, Issue 3 (June), 2009,
pp. 624 - 647.

[11] Tan A.H., Lu N. and D. Xiao. “Integrating temporal difference methods
and self-organizing neural networks for reinforcement learning with
delayed evalutive feedback,” IEEE Transaction on Neural Networks, Vol.
19, 2008, pp, 230-244.

[12] D. M. Dobrea, A. Sirbu, M.C. Dobrea, “A self-evolving controller for a
physical robot: a new introduced avoiding algorithm 12th Middle Eastern
Simulation and Modelling Conference (MESM) and 2nd GAMEON-
Arabia Conference (Edited by Marwan Al-Akaidi and Ken Newman,
Publication of Eurosis-ETI, Printed in Ghent, Belgium), November 14-
16, 2011, Arab Open University, Amman, Jordan, pp. 65-70.

[13] D.M. Dobrea and M.C. Dobrea, “An auto-organization bio-inspired
robotic system”, International Conference on Future Information
Technology, ICFIT 2010, December 14-15, 2010, Changsha, China, vol.
2, pp. 354-358, ISBN: 978-1-4244-8370-9, IEEE Catalog Number:
CFP1088K-PRT.

[14] http://www.freescale.com/
[15] Z. Michalewicz, Zbigniew, “Genetic Algorithms + Data Structures =

Evolution Programs,” Springer-Verlag, 1999.
[16] C.Z. Jaiiikow and Z. Michalewicz, "An Experimental Comparison of

Binary and Floating Point Representations in Genetic Algorithms",
Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, 1991.

[17] http://www.geatbx.com/docu/index.html

1
2

3

Obstacle

First robot
trajectory

 The robot trajectory
after the GA evolution

